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An accurate quasi-analytic method of solution is presented for the classical 
hydrodynamics problem of the constant-velocity entry of a prismatic wedge into 
a weightless incompressible inviscid fluid. The method uses the Wagner function 
W ,  which reduces the problem to the determination of a mapping function 
A = 9( W )  for the hodograph. 9( W )  is constructed by using the hodograph for 
an unsymmetric diamond together with a modifying or ‘preparatory ’ trans- 
formation. A computer method of conformal mapping is developed and is used to 
obtain this latter transformation. Results are presented for the case of a 90” 
wedge and show that the solution is both more accurate than previous solutions, 
having an error of less than 1 yo, and more complete, as it portrays the entire 
flow field and furnishes information about the functional dependence among the 
variables. 

1. Introduction 
A problem which poses great difficulty in fluid mechanics is that of deter- 

mining the pressure distribution on a solid structure due to impact with the 
free surface of a fluid. The most common example is the classical problem in 
which a prismatic wedge-shaped body penetrates the free surface of an ideal 
incompressible fluid at constant speed. First posed by Wagner (1932) in relation 
to the landing of seaplanes, this idealized problem may also be applied to the 
‘bow flare’ impact of ships in heavy seas, the performance of planing craft and 
other cases of free-surface penetration involving large fluid accelerations. The 
principal difficulty involved is that of satisfying the nonlinear constant-pressure 
condition on the free surface, whose location is unknown and must be found as 
part of the solution. Previous methods of solution may generally be grouped into 
two categories. 

(i) Solutions which specify the flow analytically (generally by an equivalent 
body approach) but only very approximately. Examples are those of Shiffman & 
Spencer (1951), Bisplinghoff & Doherty (1952) and Fabula (1957). 

(ii) Numerical solutions to the complete boundary-value problem formulated 
by Wagner, of which the most significant are those of Garabedian (1953, 1965), 
Borg (1957) and Dobrovolskaya (1963, 1964, 1969). 

Although the latter are more accurate, being numerical solutions they do not 
shed much light on the qualitative aspects of the problem such as the presence or 
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absence of singularities anywhere in the flow field, the location and type of these 
singularities and the functional dependence of the variables. In  a word, these 
numerical solutions do not give a ‘picture’ of the flow. This is in direct contrast 
to the first group of solutions, in which an analytically specified flow is used as a 
model to approximate the unknown flow, but with a concomitant loss of accuracy 
due to this approximation. The present work goes beyond these previous analyses 
and combines their best features by presenting a solution which is both analytic 
and accurate. 

2. Problem formulation 
To simplify the subsequent analysis, we consider the equivalent case in which 

the wedge is stationary and the fluid moves towards it at constant speed C. 
Because of symmetry only one side of the wedge need be considered, and in 
figure 1 the wedge centre-line is placed along the X axis so that the fluid region 
lies in the first quadrant of the X ,  Y plane. The flow is therefore from right to left 
and the fluid velocity a t  infinity is - C. The fluid is assumed to be incompressible, 
inviscid and initially undisturbed. The latter two assumptions cause the flow to be 
irrotational. One further simplification which is essential to the classical wedge 
penetration problem solved here is that the effect of gravity is ignored. As was 
shown by Wagner, this assumption causes the flow to  be geometrically self- 
similar, for which the velocity potential $ ( X ,  Y ,  t )  satisfies the homogeneity 
relation 

$(X, y ,  t )  = C2t$(x, y), (2.1) 

where x = X/Ct ,  y = Y/Ct.  (2.2) 

The dimensionless variables x and y of (2.2) reduce the above unsteady flow to 
a steady-state boundary-value problem for the transformed potential $(x, y). 
In  the x, y plane of figure 2 the free-surface height h = H/Ct and the fluid velocities 
u = U/C and v = V/C are all dimensionless. The free-surface curve h(y)  is now 
fixed in position and the wedge depth is unity. 

The various boundary conditions of the problem have been derived fully by 
Wagner and subsequent authors for both the physical ( X ,  Y )  plane and the 
transformed (x, y) plane. For the latter case, they are as follows. 

(a )  Constant pressure on the free surface: 

p/pc2 = - -$+xu+yv-~(u2+v2-  1) = 0. (2.3) 
(b )  Zero velocity normal to the wedge: 

a$/& = 0. 

(c) Symmetry: a$/ay = 0 along x axis. 

( d )  Decay of disturbance velocity a t  large distances: 

a$/ax+- 1, a$/ay+o as x ~ + Y ~ + c o .  

(e) Conservation of mass, which requires that the volume (or area, for two- 
dimensional flow) of fluid displaced above the original free surface must equal the 
immersed volume (or area) of the wedge below the original free surface. 
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FIGURE 1. Co-ordinate system : physical plane. 

(f) Also, there is a kinematic condition, stemming from the fact that for 
irrotational flow the free surface always consists of the same particles. Thus the 
rate of change of the free-surface height is equal to the upwards velocity of fluid 
particles on the free surface. If, as in figure 2, tan f? = dy/clx denotes the slope of 
the free surface, it  may be demonstrated that the above condition is expressed by 

tan0 = ( y -v ) / ( x -u ) .  (2.4) 

In order to use the methods of complex analysis we define x = x + iy as the coin- 
plex flow plane and w = u+iv  as the complex velocity. In figure 2 the z plane 
and the w plane are superimposed. Among other things, this figure illustrates 
the fact, which is due to the geometric similarity, that at  the spray tip the 
magnitude of the velocity is numerically equal to the distance from the nose of 
the wedge, i.e. wt = zt. 

Of the many observations and contributions to the problem made by Wagner, 
probably the most valuable is the geometric relationship which he derived from 
the constant-pressure condition. This was presented in a footnote of his paper and 
its significance seems not to have been realized until Man (1957), in a thesis 
supervized by Sedov, corrected an error which Wagner had made and proved 
the relationship conclusively. 

Wagner’s observation is based on the well-known fact that a free surface is 
always aligned perpendicularly to the local direction of acceleration. As is shown 
in figure 2, a change in velocity dw is incurred when moving through a distance dz 
along the free surface. This change in velocity implies an acceleration and thus 
the differential element dw must be perpendicular to dx. If, in place of w, we 
introduce its negative conjugate A = -G, then the above statement implies 
that the product d R d x  will always be negative imaginary, having an argument 
- &T. We therefore define 

dw = (anaz)*, ( 2 . 5 )  

and the condition of constant pressure is then equivalent! to requiring 
arg (dw) = - &r at every point along the free surface. Thus, the integration of 
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w, = z, I 

FIGURE 2. Vector diagram of complex quantities. 

dW along the free surface, starting a t  the spray tip, results in a straight line 
whose argument is - an, namely: 

This function will be referred to as the Wagner function. Asamapping function, 
W ( z )  is extremely useful since it transforms the unknown curve of the free surface 
in the z plane into a straight line in the W plane. The other boundaries of the fluid 
region are straight lines, both in the z plane and in the A plane. They will therefore 
continue to be straight lines when transformed into the W plane. In his disserta- 
tion Man proved that all three boundary lines are of finite length in this plane. 
Thus, the Wagner function maps the entire fluid region of the z plane into an 
isosceles (45") right triangle. The W plane is shown in the upper left-hand corner 
of figure 4 and the fluid region is the triangle in the lower left-hand portion of the 
plane. The Wagner function was first applied successfully to the wedge problem 
by Dobrovolskaya (1963); she has also pointed out (Dobrovolskaya 1969) the 
genera,lity of its application to free-surface problems. 

3. Conformal-mapping method of solution 
Since the shape of the fluid region is known in the W plane, the plane defined by 

the Wagner function, the ensuing analysis will use Was the independent variable 
and all other quantities will be expressed in terms of W .  Also, instead of attempt- 
ing to solve for the complex potential we shall solve for its derivative, which 
corresponds to the velocity. Specifically, we shall solve for A( W ) ,  where A is the 
negative conjugate of the velocity, and its related to the complex potential L2 by 

A = -dQ/dz. 
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Let us denote this unknown function by 

A = 9( W ) .  (3.1) 

In  terms of conformal transformation 9 ( W )  is a mapping function which 
transforms the triangular fluid region of the Wagner plane into the hodograph A. 

The definition of dW in (2.5) can be rearranged to give 

dWldz  = 2'( W ) ,  (3.2) 

in which the prime denotes differentiation with respect to W .  From this it follows 
that 

(3.3) 

and since A = - d f i / d z  it is also possible to obtain an integral expression for fi: 

The unknown function 9( W )  is thus capable of providing a complete solution to 
the problem and the next few sections are directed toward the determination of 
this function. The use of (3.1), (3.3) and (3.4) as mapping functions isillustratedin 
figure 4 below, which shows the W -+ A transformation as a sequence of three 
successive mappings. The 6 plane in figure 4 is a plane of uniform flow from right 
to left and 5 is thus directly related to the complex potential: Q = - g .  In  terms 
of c, the hodograph variable A becomes A = dcldz. 

4. Method for obtaining velocity 
It is a well-established fact that a body penetrating a free surface is always a 

'finite' body, regardless of' its shape or size outside the fluid, since only its wetted 
portion causes disturbance in the fluid. Thus, a t  large IzI the flow pattern for 
the wedge may be replaced by that of some equivalent body fully submerged in 
a uniform stream. The majority of the previous treatments of the wedge problem 
have used the equivalent body approach but with several simplifying approxi- 
mations. 

(i) The equivalent body is assumed to have a transverse axis of symmetry 
parallel to the y axis. For a wedge this gives a symmetric diamond-shaped body, 
having zero transverse velocity v along this axis of symmetry and infinite 
velocity at the lateral corner points. 

(ii) The free-surface velocity is taken to be that along this transverse axis of 
symmetry; that is, the transverse or v component of the velocity is assumed to be 
zero on the free surface. 

(iii) The diamond-shaped equivalent body is used as a direct replacement for 
the wedge, thus causing the point of infinite velocity to lie on the face of the wedge. 

In  order to obtain some information about the true velocity distribution, the 
first step in the present investigation was to obtain a numerical solution of the 
case of a 90" wedge, using the relaxation method of Borg (1957). From the results 
(which are not presented here for the sake of brevity) it was evident that over 

I2 FLI 56 
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FIGURE 3. Hodograph transformation for an asymmetric diamond. 

most of the flow plane the diamond-shaped equivalent body gives an accurate 
representation of the flow. Furthermore, it appeared that the velocity distribu- 
tion in the spray-root region could be accurately represented by a point of 
infinite velocity, located a t  the approximate centre of curvature of the free 
surface (point B in the z plane of figure 4). That is, the actual wedge flow seemed 
to possess a singularity similar to that of the diamond-shaped equivalent body, 
but not on the wedge itself, nor in the fluid, but outside the fluid region. Thus the 
diamond-shaped equivalent body appeared to be a suitable starting-point for a 
conformal-mapping type of solution. However, instead of being used as a direct 
replacement for the wedge, it is here used as a basic model for the hodograph A. 

Moreover, the incorrect assumption of zero transverse velocity on the free 
surface can easily be avoided by simply dropping the requirement that the 
diamond should have a transverse axis of symmetry. We thus have the more 
general case of an asymmetric diamond, such as that shown in figure 3. The 
mapping function which will produce this shape is given in derivative form by the 
Schwarz-Christoffel formula as 

The meaning of each parameter is evident from figure 3. It may be shown that 
the corner angles and lengths of sides are related by 

q(a - b )  = p(b + c).  (4.2) 

If the Y plane is interpreted as a plane of uniform flow, (4.1) represents the 
velocity A, corresponding to the flow about an asymmetric diamond in the 
A plane. As can be seen in figure 3, the shape of the v = 0 line is now more general 
and is a straight line only €or the case of a symmetric diamond (q  = p). Thus, 
provided that the trailing angle qn is correctly chosen, the true wedge velocity A 
could be accurately represented over most of the flow plane by applying the 
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mapping function A, to the 5 plane, the plane of uniform flow. However, in the 
spray-root region the wedge flow differs from that of an asymmetric diamond, a t  
least in regard to the location of the point of infinite velocity. Thus, if A, is used 
to obtain A, the plane on which it operates cannot be the {plane but must instead 
be some other plane, say the T plane, such that when (4.1) is applied to T it 
produces the correct hodograph A for the entire flow field. In  other words, the 
variable T in (4.1) is now given a special role: it must be such as to provide 
whatever modifications are required regarding the nature and location of the 
spray-root singularity. Since we wish to obtain A in the form A = 9( W )  it will 
be necessary to obtain T as a function of W .  I n  effect, the unknown mapping 
function 2’( W )  is being subdivided into two functions, T( W )  and A(T), and the 
first of these becomes the new unknown in the problem. 

Following this approach, even an approximate solution for Y( W )  quickly 
reveals that the shape of the fluid region in the T plane is very nearly a quarter 
plane. The triangular shape of the W plane can easily be converted to a quarter 
plane by the elliptic function transformation I’ = %( W )  given below in equation 
(7 .1) .  The resulting similarity between I’ and T is of great assistance, since it 
minimizes the changes required of the unknown mapping function. Hence, this 
further subdivision is adopted here and the transformation from r to T is now 
the unknown or ‘missing link’ in the chain of transformations which constitute 
9( W ) .  Since it is employed near the beginning of the solution process and since its 
purpose is to convert the I’ plane into one which is suitable for the hodograph 
transformation, it will be referred t o  as the ‘preparatory transformation ’. For 
convenience, the symbol Tp will be used to indicate this transformation: I’ = T’( F). 

5. Basic properties and parameters 
As a first step in the solution, we examine the mapping parameters which 

specify the nature and location of the singularities. The points which are known or 
suspected to be singularities are the following. 

Spray-tip singularity (l? = 0) 

Let us denote the angle in the z plane a t  which the fluid surface meets the wedge 
as r. This quantity has been the subject of much discussion in the literature. 
Early workers, such as Wagner, intuitively assumed this to be a small but finite 
angle, and the numerical solutions of Pierson (1950) and Borg (1957) clearly 
show that to be the case. However, the later and more theoretical analyses 
differed widely in their conclusions, some maintaining that 7 = 0 and others that 
r = +T. This long-standing disagreement was resolved by Hughes (197 l), who 
showed that r is small but finite, that the spray-tip angle in the 5 plane is also 
equal to r and that the corresponding angle in the A plane is - r.  In  the same 
work it is also shown that a t  the spray tip the functional relationship between A. 

and I’ is A -A, = c, rl-, (5.1) 

7 = +an. (5 .2)  

in which C, is an unspecified complex constant and a is a non-dimensional para- 
meter related to T by 

12-2 
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This in turn requires that in the transformation from r to A the right angle at 
J? = 0 be reduced to $( 1 -a) 7~ in the A plane. Since this change of angle cannot 
be obtained from A,(Y) it must be supplied by the preparatory transformation 
Y = Tp(r) .  Thus, one of the basic features which the latter must have is that 
near the spray tip T must be proportional to  That is, 

r(r)K rl-a a t  r = 0. (5.3) 

Spray-root singularity (F = I?,) 

The part of the flow plane which is of greatest interest is the area in the vicinity of 
the spray root, the point where the slope of the free surface becomes vertical, 
since it is here that the curvature of the free surface (and therefore the velocity, 
pressure, etc.) is changing most rapidly. As was mentioned earlier, an initial 
relaxation solution seemed to indicate the existence of a point of infinite velocity 
in the approximate centre of curvature of the free surface. Since the solution was 
merely numerical and since the suspected singularity was situated outside the 
fluid region, it was not possible to determine its precise nature and location by 
this method. Nevertheless, the possibility of such a point was clearly indicated, 
giving rise to  the hypothesis that in this region the velocity (and hence the 
hodograph variable A) is proportional to  some inverse power of the distance from 
the suspected singularity point. If we denote the location of this point in the 
I' plane as rb and if x denotes the inverse power, then the relationship is 

n(r) K i/(r - rap a t  r = ra. (5.4) 

In  the Y plane of figure 4 this point is Y = - b and it is clear from (4.1) that a t  this 
point there is an algebraic singularity of order q + p. However, the r-f A trans- 
formation is being performed in two stages and to be completely general we must 
also allow for a singularity to occur a t  the corresponding point in the first or 
preparatory transformation Tp(I'). The singularity of order x in the overall 
r--f A transformation is then the resultant of these two. If 7 denotes the order of 
the (possible) singularity in the preparatory transformation then 

x = r (q+P) .  (5 .5 )  

Other singularities 

The other two points in the I' plane which are known to be singularities are 
= ~f: E .  The point r = E corresponds to the nose and for a straight-sided wedge 

the relationship between I? and A at this point must be 

n(r) cc (r - €)p .  (5 .6 )  

This relationship is exactly satisfied by the diamond mapping function of (4.1)) 
in which c is the point in the Y plane corresponding to I' = B. Therefore, this 
point should not be a singularity in the preparatory transformation. On the other 
hand, the point I? = - E  does not have any predetermined role in the r-+R 
transformation and nothing can be concluded about it at this stage. 
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6. A computer-oriented method of conformal transformation 
As formulated above, the problem consists essentially in determining the 

preparatory transformation Y = Tp(r) .  In general, the task of finding a mapping 
function is a trial-and-error process. Although a few direct techniques have been 
developed for specific cases (such as the Schwarz-Christoffel theorem), it may 
be said that in most cases solutions are found either by laboriously trying various 
combinations of known mapping functions or by solving the inverse problem 
(i.e. specifying a mapping function and searching for an application). For the 
problem at hand, a method is required which easily incorporates both known and 
suspected singularities, the latter being expressed in terms of parameters whose 
values can then be found from the conditions of the problem. In order to meet 
this need, a computer-oriented method of conformal mapping was developed, 
based on the generalized circle transformation P = T,( II). This transformation 
can best be represented by a sequence of two transformations:? 

- n - h a  p ( A - K )  l + E  A S K  
f i= (rJ - ) p=--- -+- 2 1-a 2 

In  essence, the method consists of using the generalized circle transformation 
repeatedly, in different parts of the flow plane, in order to produce the required 
overall transformation. Each application operates on the result of the previous 
one and each is aimed at  producing a particular aspect of the desired overall 
transformation. The generalized circle transformation is well suited for this type 
of application, as may be seen from the following considerations. 

(i) It is general, because variations in its parameters can produce changes in 
location (determined by the sum of K and A), size (determined by the difference of 
K and A )  and shape (determined by the value of p, ranging from 0 to co, with 
p = 1 corresponding to a null transformation). 

(ii) It is simple, in that it contains only three parameters and these are directly 
related to the singularity points. Also, it is symmetric about the real axis. 

(iii) It is localized in its effect; as I IT I +co, T,(IT) -+ IT. 
Another advantage of using a single basic mapping function is the fact that the 

derivative can be calculated easily and analytically, thereby obviating the need 
for time-consuming (and often inaccurate) numerical differentiation, this is of 
great importance in the wedge problem since the physical or z plane is to be 
obtained by means of the derivative dA/dW in (3.3).  

7. Summary of transformations and associated parameters 
The preparatory transformation, which is the principal ‘unknown ’ in the 

problem, was obtained by means of the above method. Four applications of the 
basic mapping function T,(II) were required. Each has three parameters, and 
another parameter Q was used in the third mapping, giving a total of thirteen. 
However, seven of the parameter values were specified by problem requirements 

t An alternative formation using ‘coaxial co-ordinates’ is given in $6.51 of Milne- 
Thomson (1938). 
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or were predetermined from earlier values, leaving six undetermined parameters: 
,ul,,ue, K ~ ,  &,,us and p4. Details of the mapping are given in the appendix. 

The other transformations are the mapping from the W to the I' plane, which 
transforms the triangular region of W into a quarter plane, and the hodograph 
mapping from the T to the A plane which follows the preparatory transformation. 
The first transformation, denoted symbolically as I? = T,( W ) ,  is an elementary 
elliptic function transformation: 

The period of this expression in both the real and imaginary directions of W is 
equal to mK,  where K is the value of the complete elliptic integral of order 0-707, 
which from the handbooks is 1.8541. The parameter m is a measure of the size 
of the triangle in the W plane and the parameter 6 specifies the location of the 
two points in the r plane corresponding to the 45" corners of the Wagner function 
triangle. Both nz and E are undetermined parameters and must be included as such 
in the solution. 

The final transformation is the hodograph mapping from the T to the A plane, 
which uses the asymmetric diamond mapping function of (4.1). The only aspect 
requiring further discussion is the role played by the four parameters of this 
transformation. Three of its four parameters are singularity points ( - a, - b and c) 
and the latter two can be calculated from points defined in preceding planes 
( K ~  in the II, plane and E in the F plane, respectively). However, the parameter a is 
unknown and must be added to the list of undetermined parameters. The fourth 
parameter, the exponent (I, can be determined from (4.2). 

At this stage we have introduced a total of nine undetermined parameters into 
the problem: six from the preparatory transformation, one from A,(T) and 
two others from the W + I '  transformation. Some of these parameters are 
exponents and in several cases these are applied at the two most significant 
singularity points: the spray root and the spray tip. Therefore, these exponents 
are directly related to the order of the overall singularity a t  these points. For 
the spray tip it can be shown from (5.3) that a = 1 -,u1,u,,u4 and for the spray-root 
singularity the corresponding relation is 7 = ,uz,u4, since 7 denotes the order of this 
singularity in the preparatory transformation. 

8. Other parameters and problem conditions 
TWO of the conditions, the requirement of zero pressure and the kinematic 

condition, must be satisfied along the entire free-surface boundary. The location 
of this curve can be determined by substituting 9'( W) into (3.3) and integrating 
but the expressions for 5?( W) and 2'( W )  obtained from the conformal mapping 
will generally be far too complicated for analytical integration and numerical 
integration must be used. This in turn means that the position of the free surface 
cannot be obtained as an equation; instead, the calculation must consist of a 
point-by-point numerical integration of (3.3). The location and velocity of each 
point can then be inserted into (2.3) and (2.4) to test whether the two surface 
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conditions are fulfilled. I n  order to avoid having to satisfy two conditions at  
each point, the kinematic condition can be satisfied implicitly by being used to 
calculate the slope of the free surface a t  each point. In  this approach the indepen- 
dent variable is the arc lengths along the free surface and (2.4) and (3.3) constitute 
two simultaneous differential equations. These may be rewritten as 

dz/ds = exp {i arg [z + 9-)]) (8.1) 

and dW/dz = 9’( W ) .  (8.2) 

Hughes (1971) has shown that for reasons of stability the numerical integration 
of (8.1) must be done in an inwards direction, starting a t  some point z a t  a large 
distance from the wedge. He also showed that expressions can be derived for the 
various free-surface quantities which give the starting values for this integration. 
However, the corresponding starting-point in the W plane is unknown and must 
therefore be treated as an undetermined parameter, 181, bringing the total 
number of such parameters to  ten. (Since the argument of W, is - &T, only the 
magnitude is unknown.) 

Beginning with these initial values, the differential equations (8.1) and (8.2) 
can be solved by any of the standard techniques. The integration is continued 
until s = 0, which corresponds to the spray tip. At this point the value of W 
should be zero and this constitutes an additional condition which must be 
satisfied. One further condition which must be satisfied is that the nose of the 
wedge must correspond to W = -imK. This can be examined by integrating 
(8.2) from the spray tip to the nose. If W, denotes the final value of W obtained by 
this process, then the error is e = I W, + imKl. 

9. Solution for parameter values; accuracy of results 
In  general terms, the method of solution consists of solving the problem by 

means of 9( W )  using initial (or current) estimates for all of the parameter values 
and thus determining the degree to  which these values satisfy the various con- 
ditions of the problem. The degree of accuracy is measured by error terms, each 
of which corresponds to one of the conditions. Since there are ten parameters, 
there must be ten such conditions. Of the six basic conditions listed in 3 2, three 
have been satisfied automatically in the formulation of 9( W )  (normal velocity, 
symmetry and velocity decay) and therefore cannot be used for the determination 
of parameters. Also, the kinematic condition has been implicitly satisfied in 
determining the free-surface location. On the other hand, two further conditions 
relating to the W plane were introduced above (W, = 0 and W, = - i m K ) .  This 
gives a total of four conditions and seems to leave a deficiency of six. However, 
one of these four is the pressure condition which must be satisfied along the entire 
free surface, and all of the numerous values of pressure calculated during the 
free-surface integration can be used as measures of error. I n  the present case, 
seven of these pressure values must be selected in order to make up the required 
total of ten error terms. The result is a system of ten simultaneous nonlinear 
equations which may be solved by an iterative numerical technique such as the 
generalized Newton-Raphson method. 
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Pre- 
Para- liminary Modified Preliminarv Modified 
meter solution 

1c1 0.496 
1LZ 0.834 
Kg 0.322 
Q 0.672 
1L3 2.034 
1L4 0.958 
a 1.252 
m 1.450 
E 1.032 
IWol 2.585 
a 0.040 
4 1.012 
X 1.010 

solution Error term, ei solution 

0.5* C ,  = 1 Wtl 0.00025 
0.834 e2 = A-A o z  --l 0.00107 

0.671 e, = p/pC2 at s = 4.0 -0-00003 
2.0* e5 = p/pC2 at s = 2.0 -0.00027 

1.254 e7 = p/pCz at s = 1.5 0.00462 
1.450 e, = p / p P  at s = 1.25 0.00060 
1.928 e, = p/pC2 at s = 1.0 0.00017 

0.040 
1.0* 
l .O* 

0-321 e, = W,,+imK - 0'00156 

0.960 e6 = p / p P  at s = 1.75 0.00008 

2.582 el, = p/pCz at s = 0 3.0 x 10-7 
- __ 
- - 

- __ 

TABLE 1. Parameter values and solution errors. 
An asterisk denotes a fixed value. 

solution 

- 0.00050 
0*00125 
0.00102 
0~00001 
0.00015 
0.00032 
0.00554 
0.00034 
0.00004 

- 1.0 x 10-7 
- 
- 

- 

The resulting parameter values and error terms for a 90" wedge are given in 
table I under the heading 'Preliminary solution'. This heading emphasizes the 
fact that the individual transformations may have some small and extraneous 
quirks as a result of the solution process. An obvious instance is the case in which 
parameter values are very close to being exact geometrically simplifying values. 
The test as to whether a slight disparity or other small complication should be 
eliminated is the error (in boundary conditions, etc.) which is thus introduced. 
If it is negligible, then the disparity is probably extraneous to the solution and the 
simplification should be made. Therefore the parameter values given in table 1 
were examined to determine what overall transformation is being implied and to 
check for any obvious simplifications. There are four such cases and the simplified 
parameter values are indicated by asterisks in the column headed 'Modified 
solution', together with the corresponding values obtained for the other para- 
meters when these four were given their prescribed values. A comparison of error 
terms shows that there is no significant increase in error; a slight increase has 
occurred in some cases and in other cases the error has diminished. This confirms 
the advisability of making these simplifications. It should be noted that all the 
error terms in table 1 are for non-dimensional quantities which are either equal 
to, or of the order of, unity. Therefore, these error terms may be considered as 
relative errors, as well as absolute. Moreover, they are a direct indication of the 
accuracy of the solution, which in problems of this type is measured by the 
extent to which the boundary conditions are fulfilled. The accuracy of the 
solution is Considered to be excellent, since a t  no point does the error exceed I yo 
and in most cases it is well below this figure. 
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FIGURE 4. Overall transformation for A, 6 and 2. 

10. Discussion of results 
The various transformations corresponding to the modified parameter values 

are shown in figures 4 and 5. Most of the features of the solution can be discerned 
from these figures and only the more salient points will be discussed. 

Spray-root singularity 

Possibly the most interesting feature of the flow is the singularity which has been 
shown to occur in the spray-root region. The present analysis appears to be the 
first to have specifically postulated such a feature and the accuracy of the 
resulting solution is doubly gratifying inasmuch as the entire method was based 
on this postulate. With regard to the order of this singularity, the solution given in 
table I shows that x = 1.0, and thus in the I' plane the singularity is a simple 
pole. From this it can be shown, using (3.3) and (3.4), that 

(z-z,) = Q2(6-Q)$7 (10.1) 

which indicates the precise nature of the spray-root singularity in the transfor- 
mation from the 6 to the z plane (C, is an arbitrary complex constant). 

Wedge pressure distribution 

Figure 6 shows a plot of the non-dimensional pressure p/(ipQ2) along the face of 
the wedge. The secondary pressure peak near the spray root is a well-known 
feature of the wedge problem; for wedge angles greater than about 100" this 
pressure exceeds the stagnation pressure a t  the nose of the wedge. Inasmuch as 
the measure of error in problems of this type is the extent to  which the boundary 
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FIGURE 5 .  Hodograph uniform flow and wedge flow planes. 

FIGURE 6. Wedge pressure distribution. 
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conditions are satisfied (which has been shown to be within 1 yo), the error in the 
pressure distribution is considered to be of the same order of magnitude. The 
pressure obtained by the relaxation method of solution is also shown and is 
seen to be in good agreement with the present quasi-analytical solution. 

Total force 

The total hydrodynamic force F (per unit width) on the wedge is obtained by 
integrating the pressure over the projected area of the wedge face (both sides). 
This can be expressed in terms of a non-dimensional coefficient 

(10.2) 

The above integral was evaluated from the pressure distribution of figure 6 and 
the coefficient C, was found to be 3.40. The relaxation solution agreed closely 
with this, giving a value of 3.45. Dobrovolskaya (1969), on the other hand, 
obtained C, = 4-10.7 This result differs appreciably from that of the present 
analysis, but since the above paper does not give any further details for the 90" 
case it is not possible to trace the source of this discrepancy. In  any case, Dobro- 
volskaya's paper was mainly devoted to thin wedges and specifically states that 
the results presented for large wedge angles are only approximate. 

A great deal of experimental work has also been conducted for the wedge 
problem. The U.S. National Bureau of Standards Report no. 6.411-196 (1949) 
shows that for wedges of intermediate nose angle (i.e. approximately 90") the 
experimental values of C, are best represented by Wagner's original expression 

C,=T ---I , (lg ) 2  
(10.3) 

in which CT represents the deadrise angle. For a 90" wedge CT = and therefore 
the experimental value of C, for this case is simply C, = T .  Thus, the present 
solution (C, = 3-40) for the ideal case differs from that of B real fluid by approxi- 
mately 8 Yo. This discrepancy is almost certainly due to the effects of gravity and 
viscosity, both of which are ignored in the ideal case. For Dobrovolskaya's 
solution (C, = 4.10) the difference is approximately 30 %. 

11. Experimental work; comparison of ideal and actual flows 
In  order to determine the extent to which the above solution for an ideal 

weightless fluid can be applied to the case of a real fluid in the presence of gravity, 
an experiment was conducted in which fluid velocities were measured in the 
entire near-field region of the flow. The experimental equipment consisted of a 
6 x 48 x 48in. tank fitted with a clear plastic wall, a prismatic 6in. wide 90" 
wedge mounted on a vertical guide shaft, a stroboscope and a camera. Small 

t The actual value given in Dobrovolskaya (1969, figure 15) is 8.20 but the figure is in 
error because the factor of 4 in the pressure coefficient was not taken into account in the 
calculation of CF. 
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FIGURE 7. Sample particle paths. The figures 4, 6, 8, 10 and 12 labelling the 
prints refer to  t = 0.04, 0.06, 0.08, 0.10 and 0.12 respectively. 

(0.10 in. diameter) white polystyrene spheres of near-neutral density were used as 
marker particles and the high-speed flash of the stroboscope gave a multiple 
exposure. The density of the water was adjusted by the addition of salt in order to 
get a near-perfect match. The velocity of each particle was computed for each of 
its positions by means of finite-difference formulae. Since the particle paths are 
curved, this had to be done separately for the x and y directions. The wedge 
velocity was computed similarly and the particle velocities were then normalized 
by dividing by the wedge speed. 

One of the important requirementsis that the wedge speed be as nearly constant 
as possible. Preliminary testing revealed that variations of less than 3 yo could be 
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FIGURE 8. Total velocity : comparison of ideal (broken line) 
and experimental (solid line) results. 

achieved for the first 5 in. of submergence by simply pushing the wedge manually. 
This was sufficient since, in order to guard against wall and bottom effects, it was 
intended to  take readings only for this initial period of entry. Figure 7 shows some 
sample experimental results ; the complete results are contained in Hughes 
(1971). Total velocity is shown in figure 8, in which, for purposes of comparison, 
the experimental flow has been converted to the case of a fluid moving past a 
stationary wedge. The contours of constant total velocity for the ideal case 
correspond to concentric circles in the A plane, centred about the origin. The 
curves agree closely over most of the fluid region but discrepancies are evident 
in the spray-root region and these become more pronounced in the spray jet. 
This is not surprising because the fluid in this region has passed along the entire 
face of the wedge and, since the jet is relatively thin, the resulting boundary 
layer would be expected to have a large effect. Also, since this region is very 
nearly a free jet, the downward pull of gravity will have its greatest effect here. 
This is evident in figure 8, in which the spray jet is much shorter and thicker 
than for the ideal flow, and this accounts for the disagreement in free-surface 
position, 

Since the principle of similarity requires the absence of gravity, one of the 
objects of the experiment was to determine the extent to which gravity caused 
the actual flow to depart from this principle. This information can be readily 
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FIGURE 9. Geometric similarity : comparison of ideal and experimental results. 

obtained from the experimental results since in several cases two different 
particles occupied positions which are geometrically similar. As an example, 
two such pairs of particles are shown in figure 9, in which the ratio of the initial 
radial distances of the outer and inner particle is denoted as k .  The two pairs 
shown in figure 9 were selected because their distance ratio k is an integer, which 
means that every kth image of the outer particle corresponds to an image of the 
inner particle. Thus the extent to which similarity is attained is easily seen by 
multiplying each of the inner radii by k and comparing these positions with those 
of the corresponding outer particle. The resulting points in figure 9 show that the 
flow closely follows the principle of similarity over most of the flow field, with 
some departure near the free surface. 

On the free surface itself, the particle path corresponding to geometric similarity 
can be computed for any particle on the basis of constant arc length from the 
spray tip. This is done in figure 7 for particle 1 4 0 ,  and the divergence of the tlvo 
paths shows clearly the extent to which gravity and viscosity prevent similarity 
from being achieved in the spray jet region. 

We may also consider the effect which wedge velocity has in the above compari- 
son. It can be shown from dimensional analysis that the acceleration of the fluid 
is proportional to the square of the wedge velocity. From this i t  is obvious that 
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for high-speed entry the relative effect of gravity will be small owing to  the large 
fluid accelerations and the fluid will therefore follow a law of similarity more 
closely. 

12. Concluding remarks 
The computer method of conformal mapping presented above is quite general 

and can be applied t o  a wide variety of problems. The only requirement is that 
the transformation be localized in nature. If this is not the immediate situation, 
it can usually be achieved by using an approximate elementary mapping function 
for the gross transformation. This was the case in the above solution to the wedge 
entry problem, in which the elliptic-function transformation T,( W )  was used for 
this purpose. 

Also, the above solution can be further generalized to the case of a variable 
wedge speed. As was noted by Gurevich (1965), the principle of geometric 
similarity can be extended to cases in which the wedge speed is proportional to 
tr ,  where y is an arbitrary constant. This would be a significant improvement 
since in most physical cases the penetrating body is slowing down owing to the 
action of the retarding force. 

In  conclusion, the hope is expressed that by providing information about the 
entire flow field, including such details as the spray-root and the spray-tip singu- 
larities, the above analysis of the wedge problem may be helpful in dealing with 
the more difficult problem of general free-surface penetration. 

Appendix. Description of the preparatory transformation 
This transformation was obtained by means of the computer-oriented method 

outlined in $ 6 .  The solution was achieved gradually, beginning with only one 
application of the basic mapping function T,( IT). Although very approximate, this 
solution indicated clearly that singularities occurred at, or near, the points 
r = - e and r = 0 and these values were therefore assigned to K~ and A, respec- 
tively. The solution was gradually improved by further applications of T,(II). At 
each stage, the solution was examined to see what overall transformation was 
being generated and to search for cases in which the singularities in later mappings 
were located a t  the same points as those of earlier mappings. In such cases, the 
values of K and h could be computed from the earlier values. Also, in some other 
cases, the values of K and h were determined by problem requirements, such as 
symmetry. 

The final result can best be described with the aid of figure 10, which shows 
that the solution consists of four applications of the basic mapping function T,( IT). 
Each involves three parameters, and another parameter Q was used in the third 
mapping, giving a total of thirteen. However, three of the parameter values 
(A3, A, and K ~ )  are determined from earlier values, as shown schematically in the 
upper left-hand corner of figure 10. Also, the singularities K~ and A, of the first 
mapping are located at - e and 0 respectively; the value of A, is fixed from the 
symmetry of the second map ( A ,  = - K ~ )  and the value of K~ is fixed by the 
requirement that the K, point (IT, = - Q + iK,) be transformed t o  the real axis 
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in I13. Thus a total of seven parameters can be calculated beforehand, leaving 
six undetermined parameters in the preparatory transformation (pl, p2, K ~ ,  Q,  p3 
and p4). Further details of the solution may be obtained from the author. 
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